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1 Introduction

In the public law enforcement framework à la Becker (1968), individuals are
assumed to perfectly assess the probability of being fined if they commit an
offense. However, in real life situations, potential offenders generally only have
a vague idea of their own probability of getting caught and possibly, convicted.
They have beliefs regarding the probability of detection and may exhibit opti-
mism or pessimism. For instance, in the context of tax compliance, taxpayers
tend to overestimate the probability of facing an investigation by the tax au-
thority (Alm et al. 1992; Andreoni et al. 1998). In other situations, people are
somewhat optimistic about their chances of not meeting with misfortune such
as a car accident or illness (Jolls, 1998).

In our context, the way individuals estimate the probability of being de-
tected will affect their decision whether or not to obey the law. This probability
of detection and conviction is ambiguous while potential offenders know full
well the amount of the fine. The main justification for this hypothesis is that
sanctions are often detailed in sentencing guidelines or penal codes, while in-
formation about the probability of detection cannot be given. Furthermore,
uncertainty over the size of fines raises issues regarding the principle of equality
before the law (Universal Declaration of Human Rights, 1948, article 7). Imag-
ine Mr. A and Mr. B commit the same crime under the same circumstances. If
Mr. A is sentenced to 5 years while Mr. B is sentenced to 3 years, the difference
seems quite unfair2 . Next, we refer to Chateauneuf et al.’s (2007) framework to
specify how each potential offender estimates the probability of detection and
conviction.

The aim of our paper is to investigate how the fact that the choice whether
or not to commit an offense is now framed as a decision under ambiguity3 can
modify the results regarding the optimal fine and the resources a benevolent
public law enforcer should invest in detection and conviction. We consider
successively three different objective functions for the authorities. In most of the
paper, the aim of the law enforcer is to maximize subjective social welfare which
is computed with potential offenders’s beliefs about the probability of being
detected and convicted (sections 3 to 5). Like most papers in the traditional
public law enforcement literature (e.g., Garoupa 1997; Polinsky and Shavell
2007), by social welfare we refer to the benefits that individuals obtain from their
behavior, the harm they cause, the cost of catching offenders, and also the cost of
imposing sanctions on them – including here any psychological costs associated
with ambiguity. In such a case, the law enforcer may be denoted populist.
Salanié and Treich (2009) distinguish the populist regulator who "maximizes
social welfare computed with citizens’beliefs" from the paternalistic regulator

2 In practice, circumstances may vary a lot, and plea bargaining or prosecutorial discretion
for instance might alter this principle.

3Ambiguity, as defined by Snow (2010), is uncertainty about probability, created by missing
information that is relevant and could be known. See Etner et al. (2012) for a survey on
decision theory under ambiguity.
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who "maximizes social welfare computed with the regulator’s own belief".4 The
key difference is whether the social planner takes into account the difference
between how much offenders expect to pay and how much they might indeed
pay, in other words, the "mental suffering associated with overestimation of
the risk" as pointed out by Johansson-Stenman (2008). The discrepancy might
generate a perception bias cost/gain (as it does with the subjective social welfare
function) or not (as with the objective one). This question is closely related to
a debate in public economics about whether such "mental suffering" (or the
opposite) should be considered (Pollak 1998; Viscusi 2000; Salanié and Treich
2009; Johansson-Stenman 2008).5

Section 6 is devoted to the case of a paternalistic public law enforcer. A
paternalistic public law enforcer does not care about the discrepancy between
the expected and the actual expected fine. One reason may be that the law
enforcer cannot observe these costs or gains, or that what matters for society is
what citizens are actually paying and not what they subjectively expect to pay.

In section 7 we consider the case where the public law enforcer’s objective
is to minimize the social cost of crime, including both the detection cost and
the external cost of crime. In such a case, the law enforcer does not take into
account the gains from crime.

Our results call for the degree of pessimism of potential offenders in deter-
mining deterrence policy to be taken into account. Indeed, recommendations on
deterrence policy can be widely affected by beliefs. Assume that individuals are
pessimistic: they overestimate the probability of detection and conviction. We
find that optimal fines are lower for two reasons. First, fines may be consid-
ered as costly transfers if society takes mental suffering into account. Second,
the subjective probability of detection is higher than the objective probability.
Regarding the optimal means to invest in detection, our results go in differ-
ent directions depending on the objective function of the law enforcer. When
the law enforcer is populist (he/she takes into account the perception cost), we
show that it may be socially desirable to raise the probability and lower the
magnitude of fine accordingly (in order to keep the deterrence level constant)
if the marginal cost of detection is suffi ciently small. In such a case, the fine is
not necessarily maximal. When the law enforcer is paternalistic (he/she ignores
the perception cost), the optimal fine is always maximal (as fines are costless
transfers). And it is possible that the means invested in detection are lower than
those in the absence of ambiguity only under certain conditions. In such a case,
the objective probability of detection appears to be a less effi cient deterrence
tool due to the weight of the beliefs. If the law enforcer aims to minimize the
social cost of crime, the results are similar: the optimal fine is maximal, and
the optimal probability of detection may anew be lower than in the absence of
ambiguity.

4The term "paternalism" refers to the protective attitude of an authority reminiscent of a
father (pater in Latin).

5Note that the case where regulators themselves misperceive the risk is developed in Viscusi
and Hamilton (1999). Arguably, it may not be the case in our framework since the law enforcer
decides about the resources spent on detection.
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The remainder of the paper is organized as follows. Section 2 presents re-
lated papers. In section 3, we present the model of public enforcement of law
under ambiguity. In section 4, we derive a set of results when the probability of
detection and conviction is exogenous. In section 5, both the monetary sanction
and the probability of detection and conviction are endogenous. The paternal-
istic case is developed in section 6. In section 7, the public authority aims to
minimize the cost of crime. Section 8 concludes.

2 Related literature

To our knowledge, a limited number of papers have addressed the link between
crime deterrence and ambiguity. On the contrary, there is a larger number
of articles introducing ambiguity in a tort law framework, such as Teitelbaum
(2007) and Franzoni (2017). The closest contribution is certainly the one by
Harel and Segal (1999). Their contribution focuses on describing how the legal
system actually favors certainty relative to the sanction (for instance, through
specifying the penalties in the criminal code or sentencing guidelines) and uncer-
tainty towards the probability of detection and conviction and why. Regarding
this second step, they invoke behavioral and psychological insights, namely am-
biguity aversion (Ellsberg, 1961). In the analysis developed by Harel and Segal
(1999), the authorities’ objective is to choose the criminals’most disfavored
law enforcement scheme in order to induce more deterrence at the lowest cost.
They show that this scheme should consist in a certain sanction and an uncer-
tain probability of getting caught. They base their analysis on contributions and
results from the behavioral economic literature and Prospect theory (Kahneman
and Tversky, 1979).

Our analysis differs in many aspects. We do not aim to determine whether
uncertainty should be favored, but instead to examine the consequences of am-
biguity for the optimal probability of detection and the amount of the fine. In
addition, we consider both the cases where individuals might exhibit optimism
and pessimism in a Chateauneuf et al. (2007) framework, while Harel and Segal
(1999) consider only the case of ambiguity aversion. Furthermore, in our contri-
bution the benevolent law enforcer aims to maximize social welfare. Conversely,
Harel and Segal (1999) aim at determining the law enforcement scheme which
maximizes deterrence at the cheapest cost.

A body of literature draws attention to the behavioral analysis of crime
control (McAdams and Ulen 2009, Harel 2014, van Winden and Ash 2012).
Garoupa (2003) discusses the relevance of a behavioral approach to the the-
ory of public law enforcement. Many biases are presented and discussed in the
context of public law enforcement. Jolls (2005) provides a detailed analysis on
the negative impact of optimism (of agents with bounded rationality) on de-
terrence. Teichman (2011) argues that the behavioral analysis of crime control
is quite limited by the indeterminacy bias effects. For instance, the evalua-
tion of the probabilities might depend on whether they concern losses or gains,
whether the probability is close to zero or to one, whether or not people are risk-
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seeking regarding punishment. Moreover, several opposite or "counter" biases
might co-exist. For instance, the "availability bias" might recommend making
enforcement highly visible, while ambiguity aversion may promotes concealing
enforcement. Horovitz and Segal (2007) also note that the effect of ambiguity
in crime deterrence should be carefully assessed according to whether the am-
biguity refers to likely or unlikely events and whether ambiguity concerns gains
or losses.

Our contribution is also related to imperfect information regarding the prob-
ability of arrest. This issue has been investigated notably by Bebchuk and
Kaplow (1992), and more recently by Buechel et al. (2018). Bebchuk and
Kaplow (1992) analyze the case where potential offenders get a noisy signal re-
garding the probability of getting caught. They show that the optimal sanction
may be less than the maximal feasible sanction.6 Buechel et al. (2018) consider
two types of potential offenders; the naive ones, who are informed about the
resources invested in law enforcement only if the authority decides to reveal
that information, and the sophisticated ones, who are perfectly informed. They
investigate when it is optimal to hide or reveal the enforcement effort.

3 Model and assumptions

3.1 Assumptions and notations

Our framework elaborates on the conventional model of public law enforcement
(Polinsky and Shavell, 2007). Risk-neutral individuals choose whether or not to
commit an act that yields a private benefit b and generates an external per act
harm D. The public law enforcer does not observe any type b but knows their
distribution described by a general density function f(b) with support [0, B]
and a cumulative distribution function F (b), with D < B. The proportion of
offenders is equal to 1 − F (̃b), with b̃ the deterrence threshold endogenously
determined later.

The decision whether or not to commit an offense is represented in a Cho-
quet expected utility framework, where individuals have diffi culty assessing the
probability of detection and conviction, while the magnitude of fines is per-
fectly known. Each potential offender estimates the probability of detection
and conviction, and we denote this estimation as α which may be either greater
than, less than, or equal to the objective probability of detection and conviction
denoted p, with 0 < α < 1. Following Chateauneuf et al. (2007), pessimistic in-
dividuals will overestimate the probability of detection and conviction (α > p),
while optimistic individuals will underestimate their probability of being fined
(α < p). Furthermore, with the probability δ, an individual will wrongly es-
timate that the probability of detection and conviction equals α instead of p.
With a probability 1−δ, the individual will correctly estimate the probability of
detection and conviction, p. The subjective probability of being fined is written:

6 In their setting, the relative size of the error decreases as the probability of detection rises.
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p̃ = δα+ (1− δ)p = p+ δ(α− p)

where δ measures the degree of ambiguity, that is the weight of the belief α in
the subjective probability. If δ = 0, there is no ambiguity as in the standard
Beckerian framework. If δ = 1, potential offenders consider themselves to be
confronted with complete uncertainty. In the remainder of the paper, we will
assume that 0 < δ < 1.

We denote the fine s, t is the tax imposed on each individual to finance
detection and conviction, and w the individual level of (legal) wealth w, with
s ≤ w. The expected utility level of an individual who decides to commit an
offense is written:

uc = w + b− p̃s− t− (1− F (b̃))D

Conversely, the utility of an individual who decides to abide by the law is:

ua = w − t− (1− F (b̃))D

Therefore, the individual commits an offense if and only if:

b ≥ [δα+ (1− δ)]ps = ps+ δ(α− p)s = b̃(p, s)

where b̃ denotes the deterrence threshold that verifies uc = ua.
Potential offenders compare the benefit of committing the offense b with

two terms: the objective expected fine ps, and a positive or negative additional
term, δ(α − p)s. This new term results from the difference between the degree
of pessimism and the objective probability of detection and conviction, α − p,
weighted by the degree of ambiguity δ. For pessimistic individuals, the deter-
rence threshold b̃(p, s) is now higher than the objective expected fine ps, while
for optimistic individuals, the deterrence threshold is lower than the objective
expected fine.

With no ambiguity (δ = 0), the deterrence threshold is written b̃(p, s)|δ=0 =
ps. In such a case, individuals are equally affected by a percentage increase in the

fine or in the probability of detection and conviction, that is eb̃|δ=0s = e
b̃|δ=0
p = 1

where eb̃|δ=0s and eb̃|δ=0p are the elasticities of the threshold benefit value b̃ with
respect to the two deterrence tools in the absence of ambiguity. On the contrary,
if there is ambiguity (δ > 0), we have eb̃s = 1 and eb̃p =

(1−δ)p
δα+(1−δ)p < eb̃s. A

potential offender’s decision to commit a crime is more sensitive to a percentage
increase in the fine than to an equal percentage increase in the probability
of detection and conviction. And it is all the more true when the degree of
ambiguity or the degree of pessimism is high.7

7Because
∂eb̃p
∂α

< 0 and
∂eb̃p
∂δ

< 0.
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3.2 The social welfare function

The social welfare function W is defined as the sum of the utilities of all indi-
viduals, given their decisions whether or not to commit an offense:

W =

∫ b̃(p,s)

0

uaf(b)db+

∫ B

b̃(p,s)

ucf(b)db (1)

where potential offenders make their decision on the basis of the subjective
probability of being fined.

The per capita cost to achieve the probability of detection and conviction p
∈ [0, 1) is given by m(p) where m′(p) > 0 and m′′(p) ≥ 0 (Polinsky and Shavell,
1979). Imposing and collecting fines is costless. Enforcement expenditures are
financed through a lump sum tax t plus the fine s imposed on the offenders
detected. The per capita public budget constraint is written:

m(p) = t+
(
1− F (̃b)

)
ps (2)

Only balanced-budget policies are considered.
Substituting the budget constraint (2) in (1), the social welfare function

simplifies as:

W = w +

∫ B

b̃(p,s)

(b−D)f(b)db−
(
1− F (̃b)

)
(p̃− p)s−m(p) (3)

This expression exhibits an additional term by comparison with the standard
case with no ambiguity: (1 − F (b̃))(p̃ − p)s. This term is referred to as the
expected perception bias. If individuals are pessimistic, they overestimate the
probability of getting fined (p̃ > p), and the perception bias is a cost. As
p̃ − p = (α − p)δ, we have p̃ > p as long as α > p, the reverse being true. If
individuals are optimistic, then they underestimate the probability of getting
caught (p̃ < p), and the perception bias is a gain. As a consequence, the fine is
no longer a pure transfer.

Remark 1: Under ambiguity, monetary sanctions are not a pure transfer,
as they induce either a cost or a gain.

4 The optimal fine under ambiguity

We assume that enforcement expenditures are fixed, resulting in a given proba-
bility of detection and conviction. We will study the case with both an endoge-
nous fine and an endogenous probability of being fined in the next section. We
also divide everyone into two groups, optimistics on one side and pessimistics
on the other. In order to simplify the exposition, only the case of pessimistics
is presented below. We study optimistic individuals in appendix 7.
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4.1 The no ambiguity case

In the absence of ambiguity surrounding the probability of detection and con-
viction, the public law enforcer chooses s∗n which solves:

max
s

{
Wn = w +

∫ B

ps

(b−D)f(b)db−m(p)
}
u.c. s ≤ w.

The first-order condition is:

f(b̃n)p(D − ps∗n) = 0.

Thus we have s∗n =
D
p . The first-best outcome can be achieved as long as

D
p ≤ w.

4.2 The pessimistic case

Individuals are pessimistic (p̃ > p). Under ambiguity, the law enforcer chooses
s∗ which solves:

max
s

{
W = w +

∫ B

b̃(p,s)

(b−D)f(b)db−
(
1− F (̃b)

)
(p̃− p)s−m(p)

}
u.c. s ≤ w

The first-order condition is:8

f(b̃)p̃[(D − b̃) + s∗(p̃− p)] =
(
1− F (̃b)

)
(p̃− p) (4)

The left-hand side in (4) is the social marginal benefit of deterrence. An increase

of the fine by one unit reduces the probability of offending by −∂(1−F (b̃))∂s = f(b̃)p̃

units. Thus, it diminishes the occurrence of both the net harm D − b̃ and the
perception bias cost (p̃ − p)s. The right-hand side equals the marginal cost of
fines. Fines are costly because individuals overestimate the probability of getting
fined.

We can rewrite (4) as:

h(̃b)p̃︸ ︷︷ ︸
(+)

(D − ps∗) = (p̃− p)︸ ︷︷ ︸
(+)

(5)

where h(b̃) = f(b̃)

1−F (̃b)
is the hazard rate function, that is the relative likelihood

that b = b̃ conditional on b ≥ b̃. According to (5), we find that D − ps∗ > 0 or
s∗ < s∗n =

D
p .

Remark 2: When individuals are pessimistic, the optimal fine under ambi-
guity is lower than the optimal fine in the standard Beckerian framework. Thus,
it is socially desirable to set a lower fine under ambiguity as pessimism deters
offenses and sanctions are no longer a costless transfer.

8We report the analysis of second-order condition in appendix 1.
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4.2.1 Under or overdeterrence

Underdeterrence is defined as a situation where b̃ < D at equilibrium: the sub-
jective threshold benefit is lower than the harm. In such a case, some undeterred
offenders obtain a benefit b lower than the harm D. Overdeterrence is defined
as a situation where b̃ > D: the subjective threshold benefit is higher than the
harm. Some effi cient offenses (such that b > D) are deterred.

We can rewrite (4) as follows:

f (̃b)p̃︸ ︷︷ ︸
(+)

(D − b̃) = (p̃− p)︸ ︷︷ ︸
(+)

[
(
1− F (̃b)

)
− f (̃b)̃b] (6)

where
[
(
1− F (̃b)

)
− f (̃b)̃b] < 0⇐⇒ 1 + e

1−F (b̃)
b̃

< 0 (7)

with e
1−F (b̃)
b̃

= −f(b̃)b̃
(1−F (b̃)) < 0 standing for the elasticity of the proportion of

offenders. This elasticity can also be interpreted as the sensitivity of the supply
of offenses to the deterrence threshold9

From (6) and (7), we show that overdeterrence is socially desirable if and
only if the proportion of offenders is elastic to the deterrence threshold (1 <

−e1−F (b̃)
b̃

). It is socially optimal to increase the magnitude of fines when poten-
tial offenders are sensitive to fines and enforcement expenditures, up to a point
making overdeterrence socially optimal. Conversely, underdeterrence is socially
desirable if and only if the proportion of offenders is inelastic to the deterrence

threshold (1 > −e1−F (b̃)
b̃

).

Remark 3: When individuals are pessimistic, there is overdeterrence if and
only if the proportion of offenders is elastic to the deterrence threshold. There
is underdeterrence if and only of the proportion of offenders is inelastic to the
deterrence threshold.

4.2.2 Comparative statics

Let us first consider the impact of pessimism and ambiguity on the optimal
magnitude of fine. Proposition 1 summarizes our results.

Proposition 1 Assume that individuals are pessimistic. Then the optimal mag-
nitude of fines increases with the degree of pessimism α and the degree of ambi-
guity δ if and only if:

e
h(̃b)

b̃
>

p

(p̃− p)︸ ︷︷ ︸
(+)

where eh(̃b)
b̃

= h′ (̃b)̃b

h(̃b)
stands for the elasticity of the hazard rate function with

respect to the deterrence threshold.

9The term "supply" is used for instance by Becker (1968) and Ehrlich (1996).
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Proof. See Appendix 2.

When individuals are pessimistic, the more pessimistic they are (or the more
ambiguous the probability of detection and conviction is), the more it is socially
desirable to increase the magnitude of fines if and only if the elasticity of the
hazard rate function with respect to the deterrence threshold takes a suffi ciently
high positive value. As p

(p̃−p) > 0, this condition may hold if the hazard rate

function h(b) is increasing.10 Note that h′(b) > 0 for most usual functions, such
as the uniform one (Bagnoli and Bergstrom, 2005).

The link between the monotonicity of the hazard rate function and the mar-
ginal effect of pessimism and ambiguity on the optimal magnitude of fine appears
more clearly by analyzing the first-order condition under this form:

h(̃b)︸︷︷︸
(+)

(D − ps∗) = (p̃− p)
p̃︸ ︷︷ ︸
(+)

⇐⇒ h(̃b)[δα+ (1− δ)p]︸ ︷︷ ︸
(+)

(D − ps∗) = δ(α− p)︸ ︷︷ ︸
(+)

.

Let us consider the marginal perception cost of deterrence on the right-hand
side of second equation. If the degree of pessimism or the degree of ambiguity
increases, the marginal cost also increases, thereby making it more socially de-
sirable to reduce the magnitude of fines. Next, consider the marginal benefit of
deterrence on the left-hand side. We have shown before that a one-unit increase
in the fine reduces the probability of offending, thereby reducing the social harm
at the margin by D per capita, net of the objective expected fine, ps, paid by
offenders. Here, two effects play a role. First, an increase of the degree of the
pessimism or the degree of ambiguity increases the subjective probability of
detection and conviction, δα + (1 − δ)p, which weights the marginal benefit of
deterrence (defined by the difference between the social harm per capita and
the objective expected fine, D − ps). Intuitively, an increase in pessimism or
ambiguity increases the deterrence value of any given fine. Second, this mar-
ginal benefit of deterrence is weighted by the value of the hazard rate function
at the threshold benefit of offense, h(̃b). As a consequence, if the hazard rate
function is increasing with the benefit of offense (and is high enough) then it
is more plausible that the degree of pessimism or the degree of ambiguity will
positively affect the optimal magnitude of fines. Deterrence becomes more de-
sirable up to a point that when either pessimism or ambiguity increases, the
optimal magnitude of fines also increases.

Finally, notice that there may also be a standard Beckerian trade-off in the
sense that the optimal magnitude of fines can be reduced when confronted with
an increase in pessimism or ambiguity, achieving the same deterrence level. This

situation emerges if and only if eh(̃b)
b̃

takes a low positive value (or a negative

10By definition, it means that the distribution significantly puts less probability on extreme
values of the benefit of crime. Put differently, the distribution is said to be a light- (resp.
heavy-) tailed distribution when it has an increasing (resp. decreasing) hazard rate function.
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value). Assume that the hazard rate function is decreasing, that is, the dis-
tribution significantly puts more probability on extreme values of the benefit
of offenses. If larger values of benefit from offending are more plausible, then
deterrence is less socially desirable. And it becomes more desirable to reduce
the magnitude of fines as long as pessimism and ambiguity have a deterrence
effect.

In proposition 2 below, we study the effect of the probability of detection
and conviction on the optimal magnitude of fines.

Proposition 2 Assume that individuals are pessimistic. The effect of the prob-
ability of detection and conviction on the optimal magnitude of fines is depicted
in the table below.

Pessimistic Inelastic probability Elastic probability
individuals of offending of offending

e
h(̃b)

b̃
>

p

p̃− p︸ ︷︷ ︸
(+)

ds∗

dp > 0 unclear

e
h(̃b)

b̃
<

p

p̃− p︸ ︷︷ ︸
(+)

unclear ds∗

dp < 0

Comment: The probability of offense is inelastic if −e1−F (b̃)
b̃

< 1 and elastic

if −e1−F (b̃)
b̃

> 1.
Proof. See Appendix 3.

The marginal effect of the (exogenous) investment in detection and convic-
tion on the optimal magnitude of fines depends on the elasticity of the hazard
rate function with respect to the deterrence threshold. As for the degree of pes-
simism and the degree of ambiguity, the interaction between the monotonicity
of the hazard rate function and the marginal effect of investment in detection
and conviction may be understood via the first-order condition. We do not re-
port all the reasoning as it is rather similar to the previous comparative static
results.

We show in Proposition 2 that there is an additional condition to explain
the way that the magnitude of investment in detection and conviction will af-
fect the optimal magnitude of fines. The probability of offense must be elastic
in order to have a substitution effect between the two deterrence tools. It is
socially desirable to reduce the magnitude of fines when investment in detection
and conviction (exogenously) rises on condition that the probability of offense
is elastic. Under this condition, we have shown before that overdeterrence is
socially optimal thus leading to a high level of deterrence at equilibrium. It is
then plausible to replace one instrument of deterrence with the other as long as
deterrence is high enough. The reverse is true when the probability of offense
is inelastic. Deterrence is much lower at equilibrium, thus leading to under-
deterrence being socially desirable. In such a case, the optimal magnitude of
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fines tends to increase with the investment in detection and conviction to keep
deterrence at equilibrium.

5 Fines and detection under ambiguity

In this part, we assume that the public law enforcer determines both the size of
the fine and the probability of detection. We determine first the optimal mag-
nitude of fine and the optimal probability of detection, and second we analyze
the substitution between the two deterrence tools.

5.1 Optimal fine and detection

5.1.1 The no ambiguity case

In the absence of ambiguity, the public law enforcer solves:

max
s,p

{
Wn = w +

∫ B

ps

(b−D)f(b)db−m(p)
}
u.c. s ≤ w.

The first-order conditions relative to s and p respectively are:

f(p∗ns
∗
n)p(D − p∗ns∗n) = 0 (8)

f(p∗ns
∗
n)s
∗
n(D − p∗ns∗n) = m′(p∗n) (9)

where p∗n is defined by (9) with s
∗
n = w as in the standard Beckerian framework.

5.1.2 The pessimistic case

Under ambiguity, the law enforcer solves:

max
s,p

{
W = w +

∫ B

b̃(p,s)

(b−D)f(b)db−
(
1− F (̃b)

)
(p̃− p)s−m(p)

}
u.c. s ≤ w.

The first-order conditions relative to s and p respectively are:

f(b̃)p̃∗(D − p̃∗s∗) + f(b̃)p̃∗s∗(p̃∗ − p∗) =
(
1− F (̃b)

)
(p̃∗ − p∗)

f (̃b)(1− δ)s(D − b̃) + (1− F (̃b))δs+ f (̃b)(1− δ)s(p̃∗ − p∗)s = m′(p∗) (10)

The interpretation of the derivative ofW relative to the fine is the same as in
section 3. The interpretation of the derivative of W relative to the probability
of detection and conviction deserves more attention. The right-hand side of
equation (10) stands for the marginal cost of detection and conviction. The
left-hand side of equation (10) is the social marginal benefit of deterrence, which
sums three terms.
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First, an increase in the probability of detection and conviction by one unit

reduces the proportion of offenders by −∂(1−F (̃b))∂p = f (̃b)(1− δ)s units, thereby
diminishing the occurrence of net harm by (D − b̃).

Next, there is a perception bias cost of deterrence as each offender does not
expect to pay ps but p̃s. If offenders are pessimistic (p̃ > p), the discrepancy
between how much they expect to pay and the objectively expected fine (p̃−p)s
reflects the perception bias cost. A one-unit increase of the probability of detec-

tion and conviction diminishes this discrepancy, thus reducing this perception
cost by δs units, which occurs with probability (1− F (̃b)).

Finally, an increase in p raises the expected gains provided by fines. The
subjective probability p̃ increases as well, but by less than one unit (∂p̃∂p = 1−δ).
At the same time, the proportion of offenders decreases by−∂(1−F (̃b))∂s = f (̃b)(1−
δ)s units, thereby saving the perception bias cost (p̃− p)s.

5.2 Substitution between deterrence tools

In this subsection, we determine the conditions under which it is socially de-
sirable to replace one deterrence tool by the other. We report our results in
Proposition 3 below.

Proposition 3 Assume that individuals are pessimistic. It is socially desirable
to increase the probability of detection and conviction while decreasing the mag-
nitude of fines if and only if

eb̃αs >
m′(p)

(1− F (̃b))

where eb̃α is the elasticity of the deterrence threshold relative to the degree of
pessimism.

Proof. See Appendix 4.

Assume that there is no ambiguity (δ = 0). Then, we have eb̃|δ=0α = 0. Ac-
cording to Proposition 3, it is then socially desirable to decrease the probability
of detection and conviction while increasing the magnitude of fines. Intuitively,
there is neither any perception cost, nor any cost to collect fines, while detection
and conviction is costly. We thus find the standard Beckerian result: s∗n = w.

Next, assume that δ > 0: the probability of detection and conviction be-
comes ambiguous. The condition under which it is optimal to replace investment
in ambiguous detection and conviction with the well known fine at the margin
is written eb̃αs <

m′(p)

1−F (̃b)
. The intuition behind this result runs as follows. First,

detection and conviction must be costly enough (see m′(p)

1−F (̃b)
> 0). Second, po-

tential offenders must not be too sensitive to the degree of pessimism (see the
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term eb̃α ). Recall that individuals are more affected by a percentage increase in
the magnitude of fines than by an equal percentage increase in the probability
of detection and conviction (eb̃p < eb̃s). Third, it is all the more socially desir-
able to increase the optimal magnitude of fines while reducing the investment
in detection and conviction when fines are little used to deter offenses (see the
variable s to the left-hand side of the inequality above).

6 The paternalistic social welfare function

Up to now, the law enforcer was seen as populist because social welfare was based
on individuals’beliefs. At the opposite, a paternalistic benevolent law enforcer
takes into account the expected cost ps actually experienced by individuals
who decide to commit crimes. Thus, the paternalistic social welfare function
is written as (1) with uc = w + b − ps − t − (1 − F (b̃))D instead of uc =

w + b− p̃s− t−
(
1− F (̃b)

)
D. Thus, the social welfare function is written:

Wa = w +

∫ B

b̃(p,s)

(b−D)f(b)db−m(p)

The social welfare equals the individual wealth w, plus the gains from crime net
of the harm caused

∫ B
b̃(p,s)

(b−D)f(b)db, and less the cost of detection m(p).

Remark 4: If the public law enforcer is paternalistic, monetary sanctions
under ambiguity are seen as a costless transfer.

6.1 The optimal fine

Under ambiguity, the paternalistic law enforcer solves:

max
s

{
Wa = w +

∫ B

b̃(p,s)

(b−D)f(b)db−m(p)
}
u.c. s ≤ w

where b̃(p, s) = ps+ δ(α− p)s. The first-order condition is:

f(b̃)p̃(D − b̃) = 0 (11)

Thus, s∗ = D
p̃ . As p̃ = δ(α − p), the optimal fine is decreasing with the degree

of pessimism and the degree of ambiguity because pessimistic individuals will
overestimate the expected fine. The first-best outcome can be achieved as long
as Dp̃ ≤ w.

Remark 5: With a paternalistic law enforcer, the first-best outcome b̃ = D
can be achieved as long as D

p̃ ≤ w.
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If individuals are pessimistic (p̃ > p), the optimal sanction under ambiguity
with a paternalistic public law enforcer is still lower than the optimal fine in the
absence of ambiguity: s∗ < s∗n =

D
p .

Remark 6: With a paternalistic law enforcer, the optimal fine under am-
biguity is lower than the optimal fine without ambiguity.

6.2 Optimal fine and detection

Both deterrence tools are now endogenous. Under ambiguity, the paternalistic
law enforcer solves:

max
s,p

{
Wa = w +

∫ B

b̃(p,s)

(b−D)f(b)db−m(p)
}
u.c. s ≤ w.

The derivatives of Wa relative to s and p respectively are given by:

f(b̃)p̃∗(D − p̃∗s∗) = 0 (12)

f(b̃)(1− δ)s∗(D − b̃)−m′(p∗) = 0 (13)

As the fine is cost-free in this setting (as in the standard Beckerian model),
the fine is set at its maximum: s∗ = w. Note also thatD > b̃ = p̃w at equilibrium
as the first-order condition on p indicates that:

f(b̃)(1− δ)w︸ ︷︷ ︸
(+)

(D − b̃) = m′(p∗)︸ ︷︷ ︸
(+)

Proposition 4 Assume that individuals are pessimistic. With a paternalistic
public law enforcer choosing both the fine and the probability of detection, the
optimal fine is maximal. The optimal probability of detection and conviction
under ambiguity is higher (resp. lower) than the optimal probability of detection
in the absence of ambiguity if:

eb̃δ
1− δ
δ

(
e
f(b̃)

b̃
− b̃

D − b̃

)
> 1 (resp. < 1). (14)

Proof. See Appendix 5.

The comparison between the optimal expenditures in detection and convic-
tion in the no ambiguity case versus the pessimistic case is not straightforward.
Let us compare the first-order condition with p in cases (9) and (13). Notice that
the marginal cost of detection and conviction (to the right-hand side above) does
not depend on the degree of ambiguity, while the marginal benefit of detection
and conviction does. It depends on a large set of factors, such as the elasticity
of the threshold benefit value with respect to the degree of ambiguity (eb̃δ), a
relative measure of the degree of ambiguity ( 1−δδ ), the elasticity of the density
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function with respect to the threshold value of benefit (ef(b̃)
b̃
) minus a relative

measure of the underdeterrence at equilibrium ( b̃
D−b̃ > 0). For sketch of sim-

plicity, assume that the benefit of crime follows a uniform distribution over the
interval (0, B). Under this condition, the optimal probability of detection and
conviction under ambiguity is lower than the optimal probability of detection
in the no ambiguity case.

7 Minimizing the social cost of crime

One may consider, as Dau-Schmidt (1990), that it is morally shocking to include
criminal benefits in the social welfare function. More generally, criminals’prefer-
ences should not be considered as belonging to social preferences, since criminals
are people society wants to exclude. In this view, the public law enforcer aims
to minimize the social cost of crime defined as the sum of the expected external
harm induced by offenses, and the cost of detection and conviction. Thus, the
public law enforcer solves:

min
s,p

{
SC =

(
1− F (̃b)

)
D +m(p)

}
u.c. s ≤ w.

The derivatives of SC relative to s and p respectively are given by:

−f(b̃)p̃∗D = 0 (15)

f(b̃)(1− δ)s∗D = m′(p∗) (16)

In this framework, increasing the fine reduces the social cost. Therefore, the
fine should be set at its maximum s∗ = w. The optimal probability of detection
is defined by equation (16). The left-hand side of (16) represents the marginal
benefit. Increasing the probability of detection decreases the proportion of of-
fenders, thereby reducing the occurrence of social harm. The right-hand side of
(16) represents the marginal cost of increasing detection.

In the absence of ambiguity, the program is:

min
s,p

{
SC =

(
1− F (̃b)

)
D +m(p)

}
u.c. s ≤ w.

The optimal fine s∗n equals w because the fine is cost-free. The probability of
being fined is defined by:

f(ps)wD = m′(p∗) (17)

To determine how the probability of detection and conviction is affected by
ambiguity at equilibrium, we compare left-hand sides of equations (16) and (17).
It is suffi cient to show that the marginal benefit of detection in (16) increases
with the degree of ambiguity to conclude that the optimal probability of detec-
tion and conviction under ambiguity is higher than the optimal probability of
detection and conviction in the no ambiguity case, the reverse being true.
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Proposition 5 Assume that individuals are pessimistic. If the public law en-
forcer aims to minimize the social cost of crime, then the optimal probability
of detection and conviction under ambiguity is higher (resp. lower) than the
optimal probability of detection in the absence of ambiguity if:

e
f(b̃)

b̃
>

p̃

(α− p̃)︸ ︷︷ ︸
(+)

(resp. ef(b̃)
b̃

<
p̃

(α− p̃) ).

Proof. See Appendix 6.
The comparison between the optimal expenditures in detection and convic-

tion in the no ambiguity case versus the ambiguity case anew depends on the
distribution of benefit of crime. For instance, if crime benefit follows a uniform
distribution, then the optimal probability of detection and conviction under am-
biguity is lower than the optimal probability of detection in the no ambiguity
case.

Remark 8: If the public law enforcer aims to minimize the social cost of
crime, then the optimal magnitude of fine should be set at its maximum. The
optimal probability of detection and conviction under ambiguity is lower than the
optimal probability of detection in the no ambiguity case if the benefit of crime
is uniformly distributed.

8 Conclusion

The aim of this paper is to provide some insights into how the degree of pes-
simism influences the socially optimal amount of fines and enforcement expen-
ditures when potential offenders are unable to perfectly estimate the probability
of detection and conviction.

By comparison with the standard Beckerian framework (Garoupa, 1997;
Polinsky and Shavell, 2000), fines are no longer a costless transfer if indivi
duals overestimate their probability of being caught with a populist law en-
forcer. The reason is that populist law enforcers take into account the discrep-
ancy between the actual expected fine and the subjectively expected fine. This
discrepancy, denoted as perception bias, reflects disutility when potential offend-
ers are pessimistic. Consequently, the optimal fine is lower than the maximal
one, contrary to the standard Beckerian framework. Further, it may be socially
optimal to raise the probability of detection while decreasing the magnitude of
fine under a certain condition. This result, as well as the comparative statics
analysis, considerably depends on the distribution of crime’s benefit.

With a paternalistic law enforcer, the perception cost is no longer taken into
account. Fines are a pure transfer between the detected offenders and society,
as fines are used to fund detection. In such a case, the first-best outcome can be
achieved as long as the optimal fine is lower or equal than the maximal one, as
in the standard Beckerian framework. We show that the optimal fine adjusts to
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the impact of pessimism on the deterrence threshold. The more pessimistic the
offenders, the lower the optimal fine. When both the fine and the probability
of detection are endogenous, the optimal fine is maximal as in the standard
Beckerian framework. We also show that the optimal probability of detection
under ambiguity may be lower than the optimal probability in the absence of
ambiguity under certain conditions. For instance, this result holds if the benefit
of crime is uniformly distributed. The means invested in detection should be
reduced due to the weight of beliefs, making potential offenders less sensitive to
a rise in the probability of detection.

In order to complete the picture, we consider the case where the law en-
forcer’s aim is to minimize the social cost function, defined as the external harm
induced by offenses, plus the cost of detection and conviction. When the pub-
lic law enforcer seeks to minimize the social cost of crime, ambiguity plays no
role regarding the fine: it should be set at its maximum. However, the means
invested in detection may be anew reduced due to the weight of beliefs, making
potential offenders less sensitive to a rise in the probability of detection under
a certain condition.

Let us say a word about the optimistic case (appendix 7). If potential of-
fenders are optimistic, it is still true that fines are no longer a pure transfer
with a populist law enforcer. But the similarities with the pessimistic case end
there or almost. When potential offenders are optimistic, they underestimate
the probability of detection. Thus the deterrence threshold is lower than the
objective one. And the perception bias now reflects a gain, as individual expect
to pay less that what will actually go into the coffers of the State (to fund de-
terrence policy). Consequently, the results go in the opposite direction than in
the pessimistic case. The optimal fine under ambiguity should be higher than
the standard Beckerian fine, and the comparative statics results are reversed.
Further, with a paternalistic law enforcer, the optimal fine perfectly adjusts to
the belief to reach the optimal objective deterrence threshold. With optimistic
potential offenders, it means that the optimal fine under ambiguity is higher
than the optimal fine in absence of ambiguity. Finally, with a public law en-
forcer aiming at minimizing the social cost of crime, the optimal probability of
detection and conviction under ambiguity is lower than the optimal probability
of detection in the no ambiguity case if the benefit of crime is uniformly distrib-
uted. The explanation is the same as with pessimistic law offenders: due to the
weight of beliefs, potential offenders less sensitive to a rise in the probability of
detection.

Our contribution has several limits. We do not consider the possibility of
"debiasing" potential offenders (Jolls and Sunstein, 2006). We could imagine
that the law enforcer attempts to educate potential offenders about the risk
of being optimist, or to reduce individuals’cost of information through public
warnings. However, the effect of such attempts on optimistic individuals’beliefs
might be limited. Indeed, the optimistic bias is often associated with a "blind
spot bias" (Pronin et al., 2002). The "blind spot bias" is the illusion that one
is less prone to bias, and notably optimism. Therefore, it is quite diffi cult if not
impossible to modifiy optimistic individuals’beliefs (Luppi and Parisi, 2016).
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Another limitation of our contribution is that we consider a homogeneous
population in terms of beliefs. Individuals share either the same degree of
ambiguity, or the same degree of pessimism. Furthermore, we do not consider
risk-aversion or risk-seeking. In a sense, our contribution may be seen as a first
step towards producing a formal representation of ambiguity in a public law
enforcement model.
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9 Appendix

9.1 A1: Second-order condition

The second-order condition for s is written:

h′(̃b)(δα+ (1− δ)p)(D − ps) < ph(̃b)

where h(̃b) = f (̃b)

1−F (̃b)
is the hazard rate function estimated at the threshold

value b̃. The sign of the right-hand side depends on the individuals being either
optimistic or pessimistic, while the sign of the left-hand side depends on the
monotonicity of the hazard rate function.

Assume that individuals are pessimistic: α−p > 0. Using (5), we have shown
that D − ps∗ > 0 at equilibrium. Thus h′(̃b) < 0 is a suffi cient condition for
the second-order condition to hold. If the hazard rate function is monotoni-
cally decreasing, it is an indication that the distribution significantly puts more
probability on larger values of the benefit of illegal activity. Put differently,
the distribution of the benefit of committing the harmful act has a heavy tail,
meaning a tail that is heavier than an exponential distribution. And the heavier
the tail, the higher the probability that illegal benefits will take one or more
disproportionate values in the population.

Using first-order condition, we can replace ph(̃b) = δ(α−p)p
(δα+(1−δ)p)(D−ps) in sec-

ond order condition above. If the hazard rate function is increasing (h′(̃b) > 0)
as for frequently used elementary distributions such as the uniform, normal and
exponential ones, then the second-order condition condition can be rewritten:

h′(̃b) <
δ(α− p)p

(δα+ (1− δ)p)2(D − ps)2︸ ︷︷ ︸
(+)

.
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If the hazard rate function is increasing then the distribution puts less proba-
bility on larger values of the illegal benefit. The probability distribution has a
thinner tail than an exponential distribution. This means that it goes to zero
much faster than the exponential, and so has less mass in the tail.

Assume that individuals are optimistic. According to (5), we now have
D − ps∗ < 0 at equilibrium because p̃ < p. Thus, h′(̃b) > 0 is a suffi cient
condition for the second-order condition to hold. If h′(̃b) < 0, then the second-
order condition writes:

h′(̃b) >
δ(α− p)p

(δα+ (1− δ)p)2(D − ps)2︸ ︷︷ ︸
(−)

.

9.2 A2: Proof of Proposition 1

We start by computing the sign of the derivative ds∗

dα . The first-order condition
can be written:

h(̃b) (δα+ (1− δ)p) (D − ps)− δ(α− p) = 0.

Using the implicit function theorem and the second-order condition, we obtain:

ds∗

dα
> 0⇔ h′(̃b)̃b(D − ps)δ + h(̃b)δ(D − ps)− δ > 0.

Dividing by δ:

ds∗

dα
> 0⇔ h′(̃b)̃b(D − ps) + h(̃b)(D − ps) > 1.

Using the first-order condition, we replace h(̃b)(D− ps) = δ(α−p)
δα+(1−δ)p and put it

on the right-hand side. So

ds∗

dα
> 0⇔ h′(̃b)̃b(D − ps) > 1− δ(α− p)

δα+ (1− δ)p =
p

δα+ (1− δ)p .

Still using the first-order condition, we now replace D − ps = δ(α−p)
(δα+(1−δ)p)h(̃b)

and simplify by (δα+ (1− δ)p) to have:

ds∗

dα
> 0⇔ h′(̃b)̃b

h(̃b)
δ(α− p) > p.

If individuals are pessimistic (α − p > 0) then ds∗

dα > 0 ⇔ h′ (̃b)̃b

h(̃b)
> p

δ(α−p)

where h′ (̃b)̃b

h(̃b)
stands for the elasticity of the hazard rate function estimated at

the threshold value. If individuals are optimistic (α − p < 0) then ds∗

dα > 0 ⇔
h′ (̃b)̃b

h(̃b)
< p

δ(α−p) .
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Now, we study the sign of the derivative ds∗

dδ . Using the implicit function
theorem, the first and second-order conditions, we get:

ds∗

dδ
> 0⇔ (α− p)((h′(̃b)̃b(D − ps) + h(̃b)(h− ps)− 1)

We have previously shown the conditions under which the expression (h′(̃b)̃b(D−
ps)+h(̃b)(D−ps)−1) is either positive or negative. Thus, if α−p > 0 (pessimistic
case) then ds∗

dδ > 0 ⇔ h′ (̃b)̃b

h(̃b)
> p

δ(α−p) . If α − p < 0 (optimistic case) then

ds∗

dδ > 0⇔ h′ (̃b)̃b

h(̃b)
< p

δ(α−p) if (α− p) < 0.

9.3 A3: Proof of Proposition 2

The first-order condition is:

h(̃b) (δα+ (1− δ)p) (D − ps)− δ(α− p) = 0.

Using the implicit function theorem and the second-order condition, we have:

ds∗

dp
> 0⇔ h′(̃b)̃b(D − ps)(1− δ) + h(̃b)(1− δ)(D − ps)− h(̃b)̃b+ δ > 0.

Adding 1 while subtracting 1 on the left-hand side of the inequality above gives:

ds∗

dp
> 0⇔ h′(̃b)̃b(D − ps)(1− δ) + h(̃b)(1− δ)(D − ps)− h(̃b)̃b+ δ+1− 1︸ ︷︷ ︸ > 0.

After rearranging, we have:

ds∗

dp
> 0⇔ (1− δ)[h′(̃b)̃b(D − ps) + h(̃b)(D − ps)− 1]− h(̃b)̃b+ 1 > 0.

We have shown in proof of Proposition 1 the conditions under which the expres-
sion (h′(̃b)̃b(D− ps) + h(̃b)(D− ps)− 1) is either positive or negative. Further,
we have: −h(̃b)̃b + 1 > 0 ⇔ −e1−F (̃b)

b̃
> 1 where −e1−F (̃b)

b̃
> 0 is the elasticity

of the probability of offense with respect to the threshold value. All the cases
are depicted in table 1.

9.4 A4: Proof of Proposition 3

By definition, b̃ = (δα+ (1− δ)p) s. So,

ds

dp b̃=cst
=
−(1− δ)s

δα+ (1− δ)p < 0.

Fully differentiating the social welfare function, we have:

dW = −
(
1− F (̃b)

)
(δ(α− p)ds− δsdp)−m′(p)dp.
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Factorizing by dp , we have:

dW = dp

(
(1− F (̃b))

(
−δ(α− p)ds

dp
+ δs

)
−m′(p)

)
.

Thus

dWb̃=cst = dp

(
(1− F (̃b))

(
δ(α− p)(1− δ)s
δα+ (1− δ)p + δs

)
−m′(p)

)

= dp

(1− F (̃b))eb̃αs︸ ︷︷ ︸
(+)

−m′(p)


where eb̃α is the elasticity of the deterrence threshold with respect to the degree
of pessimism.

As a consequence, if eb̃αs >
m′(p)

(1−F (̃b))
then it is socially desirable to increase

the probability of detection and conviction while decreasing the magnitude of
fines. If eb̃αs <

m′(p)

(1−F (̃b))
then it is socially desirable to decrease the probability of

detection and conviction while increasing the magnitude of fines, and to choose
s∗ = w at equilibrium.

9.5 A5: Proof of Proposition 4

In the no ambiguity case, the optimal probability of detection and conviction is
given by:

f(p∗nw)w(D − p∗nw) = m′(p∗n)

while in the paternalistic case (under ambiguity), it is given by:

f(b̃)(1− δ)w(D − b̃) = m′(p∗)

with b̃ = [δα+ (1− δ)p]w and D > b̃ at equilibrium.
The marginal cost of detection and conviction (at the right-hand side above)

does not depend on the degree of ambiguity while the marginal benefit of detec-
tion and conviction does in the paternalistic case. Remark that the two values of
marginal benefit of detection and conviction depicted above are equal if δ = 0.
Thus it is suffi cient to show that the marginal benefit of detection in the pater-
nalistic case is increasing with the degree of ambiguity (δ) to conclude that the
optimal probability of detection and conviction under ambiguity is higher than
the optimal probability of detection and conviction in the no ambiguity case.
Conversely, if the marginal benefit of detection and conviction in the paternal-
istic case decreases with the degree of ambiguity, then the optimal probability
of detection and conviction under ambiguity is now lower than the optimal
probability of detection and conviction in the no ambiguity case.

Using the implicit function theorem and the first-order condition in the pa-
ternalistic case, we show that the marginal benefit f(b̃)(1 − δ)w(D − b̃) is in-
creasing with δ if and only if:

f ′(b̃)(α− p)w(D − b̃)(1− δ)− f(b̃)(1− δ)(α− p)w − f(b̃)(D − b̃)w > 0
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or

f(b̃)(D − b̃)︸ ︷︷ ︸
(+)

(
f ′(b̃)

f(b̃)
(α− p)(1− δ)− (1− δ)(α− p)

D − b̃
− 1
)
> 0

or

e
f(b̃)

b̃

(
(α− p)(1− δ)δ

δb̃

)
− δ(1− δ)(α− p)b̃

δ(D − b̃)b̃
− 1 > 0

where ef(b̃)
b̃

= f ′(b̃)

f(b̃)
b̃ is the elasticity of the density function with respect to

the threshold value of benefit. Next, replacing eb̃δ =
δ(α−p)w

b̃
the elasticity of

the threshold value of benefit with respect to the degree of ambiguity in the
inequality above, we have:

e
f(b̃)

b̃
eb̃δ
1− δ
δ
− eb̃δ

1− δ
δ

b̃

D − b̃
− 1 > 0

or

eb̃δ
1− δ
δ

(
e
f(b̃)

b̃
− b̃

D − b̃

)
> 1.

9.6 A6: Proof of Proposition 5

If the law enforces seeks to minimize the social cost of crime under ambiguity,
then s∗ = w and p∗ is defined by f(b̃)(1−δ)wD = m′(p∗). The marginal benefit
of detection, f(b̃)(1− δ)wD, is increasing with δ if and only if f ′(b̃)(α−p)w(1−
δ) − f(b̃) > 0. Factorizing by −f

′(b̃)

f(b̃)
b̃ = e

f(b̃)

b̃
gives ef(b̃)

b̃
(1 − δ)(α − p)w > b̃.

Next replace (1 − δ)(α − p) by α − p̃ at left-hand side, and replace b̃ by p̃w
at right-hand side. We obtain that the marginal benefit of detection under

ambiguity increases with the degree of ambiguity if and only if ef(b̃)
b̃
(α − p̃) >

p̃. This is suffi cient to conclude that the optimal probability of detection and
conviction under ambiguity is higher than the optimal probability of detection
and conviction in the no ambiguity case. In the pessimistic case (α − p > 0),

this condition rewrites ef(b̃)
b̃

> p̃
α−p̃ > 0 while in the optimistic case (α− p < 0),

it rewrites ef(b̃)
b̃

< p̃
α−p̃ < 0.

9.7 A7: Optimistic potential law offenders

There exists some crucial differences between the optimistic case and the pes-
simistic case. First, when individuals are optimistic, they underestimate the
probability of detection and conviction: p̃ < p or α < p. As a consequence, the
deterrence threshold (p̃s) is inferior to the objective expected fine (ps). Second,
the elasticity of the deterrence threshold relative to the degree of ambiguity is
negative: eb̃δ < 0. It means that an increase of the degree of ambiguity has a
deterrence effect while the reverse is true if inviduals are pessimistic. Third, the
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perception bias defined as (p − p̃)s > 0 is now a gain while it is a cost in the
pessimistic case.

9.7.1 Populistic law enforcer

The populist public law enforcer chooses s∗ which solves:

max
s

{
W = w +

∫ B

b̃(p,s)

(b−D)f(b)db−
(
1− F (̃b)

)
(p̃− p)s−m(p)

}
u.c. s ≤ w

The first-order condition (4) is:

f(b̃)p̃(D − b̃) +
(
1− F (̃b)

)
(p− p̃) = f(b̃)p̃s∗(p− p̃).

The left-hand side in equation above is the marginal benefit of deterrence. It
combines two terms. First, an increase of the fine by one unit reduces the

probability of offending by −∂(1−F (b̃))∂s = f(b̃)p̃ units thereby diminishing the

occurrence of the net harm D− b̃ > 0. Second, the positive term
(
1− F (̃b)

)
(p−

p̃) means that raising the fine increases the expected perception bias gain that
is the difference between the expected fine and the subjective expected fine.
The right-hand side equals the marginal cost of fines. An increase of the fine

by one unit reduces the probability of offending by
−∂(1−F (̃b))

∂s units, thereby
preventing individuals from getting the perception bais (gain): (p− p̃)s > 0.
According to (5), we have h(̃b)p̃(D − ps∗) = (p̃ − p) < 0 where h(.) > 0

is the hazard rate function. Thus we find that D − ps∗ < 0 or s∗ > s∗n =
D
p .

When individuals are optimistic, the optimal fine under ambiguity is higher than
the optimal fine in the standard Beckerian framework while it is lower when
individuals are pessimistic. It is socially desirable to increase the magnitude of
fines beyond the value D

p for two reasons. First, there is an additional marginal
benefit associated with the use of fines due to the perception bias. Second,
optimistic potential offenders are less sensitive to fines.

From equations (6) and (7), we explain how the psychological group (pes-
simists or optimists) has an influence on the social desirability of under or
overdeterrence. If the proportion of offenders is elastic to the deterrence thresh-
old, then overdeterrence is socially desirable if individuals are pessimistic while
underdeterrence is socially desirable if individuals are optimistic. At the oppo-
site, if the proportion of offenders is inelastic to the deterrence threshold, then
overdeterrence is socially desirable if individuals are optimistic while underde-
terrence is socially desirable if individuals are pessimistic.

We turn to the comparative statics analysis. We show in appendix 2 that the
optimal magnitude of fine is decreasing (increasing) with the degree of pessimism

α and the degree of ambiguity δ if and only if eh(̃b)
b̃

> p
(p̃−p) under the condition

that individuals are optimistic (resp. pessimistic).
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Next, we report in table below the effect of the probability of detection and
conviction on the optimal magnitude of fines for each psychological group (see
appendix 3 for the proof).

Optimists Pessimists

Inelastic probability e
h(̃b)

b̃
> p

δ(α−p) unclear ds∗

dp > 0

of offense e
h(̃b)

b̃
< p

δ(α−p)
ds∗

dp > 0 unclear

Elastic probability e
h(̃b)

b̃
> p

δ(α−p)
ds∗

dp < 0 unclear

of offense e
h(̃b)

b̃
< p

δ(α−p) unclear ds∗

dp < 0

Now, assume that the two deterrence tools are endogenous. If offenders are
optimistic (p̃ < p), the optimal probability of detection and conviction is im-
plicitly defined by:(

1− F (̃b)
)
δs+ f (̃b)(1− δ)s(D − b̃) = −f (̃b)(1− δ)sδ(α− p∗)s+m′(p∗)

The left-hand side equals the marginal benefit. We have shown before that the
discrepancy between how much they expect to pay and the objective expected
fine (that is (p̃− p)s = δ(α− p)s) is positive, and represents the perception bias
gain. Thus, a one-unit increase of the probability of detection and conviction

raises this gain by δs units, which occurs with probability
(
1− F (̃b)

)
. In other

words, an increase in detection raises the expected sanction more than the sub-
jective expected sanction, and this net marginal difference equals δs. Next, the

proportion of offenders decreases by −∂(1−F (̃b))∂s = f (̃b)(1−δ)s units, thereby di-
minishing the occurrence of the net harm (D−b̃). The right-hand side stands for
the marginal cost. There are two terms: m′(p) and −f (̃b)(1−δ)sδ(α−p∗)s. The
second term means that a one-unit increase of the probability of detection and

conviction reduces the probability of offense by −∂(1−F (̃b))∂s = f (̃b)(1−δ)s units,
thereby reducing the occurrence of the perception bias gain δ(α−p∗)s = (p̃−p)s.

9.7.2 Paternalistic law enforcer

A paternalistic benevolent law enforcer solves:

max
s

{
Wa = w +

∫ B

b̃(p,s)

(b−D)f(b)db−m(p)
}
u.c. s ≤ w.

The first-order condition is f(b̃)p̃(D − b̃) = 0. So we have s∗ = D
p̃ whatever

the individual being optimistic or pessimistic. As p̃ = δα + (1 − δ)p, the op-
timal magnitude of fine is still decreasing with the degree of pessimism, but is
increasing with the degree of ambiguity because optimistic individuals under-
estimate the probability of detection. Next, the first-best outcome (̃b = D) can
be achieved as long as D

p̃ ≤ w. Finally, if individuals are optimistic (p̃ < p),
the optimal sanction under ambiguity (with a paternalistic public law enforcer)
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is higher than the optimal fine in absence of ambiguity s∗ > s∗n =
D
p while the

reverse is true if individuals are pessimistic.

9.7.3 Minimizing social costs

The public law enforcer solves:

min
s,p

{
SC =

(
1− F (̃b)

)
D +m(p)

}
u.c. s ≤ w.

As the derivatives of SC relative to s is −f(b̃)p̃∗D = 0, the fine should be set at
its maximum s∗ = w. And the optimal probability of detection is still defined
by the equation f(b̃)(1 − δ)wD = m′(p∗). We show in Appendix 6 that the
optimal probability of detection and conviction under ambiguity is higher than
the optimal probability of detection and conviction in the no ambiguity case if

and only if ef(b̃)
b̃

< p̃
α−p̃ < 0. It follows that the optimal probability of detection

and conviction under ambiguity is lower than the optimal probability of detec-
tion in the no ambiguity case if the benefit of crime is uniformly distributed (as

e
f(b̃)

b̃
= 0).
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